Fusion of Iris and Retina Using Rank-Level Fusion Approach

نویسنده

  • A. Kavitha
چکیده

Personal identification and authentication is difficulty in all the systems. Shared secrets like Personal Identification Numbers or Passwords and key devices such as Smart Cards are not presently sufficient in few situations. These traditional tokens based systems may be easily stolen or lost. Biometrics is the only way of improving the capability to recognize the persons according to the physiological or behavioral features. In many real-world applications, unimodal biometric system suffers from some limitations of noise in sensed data, intra-class variation, inter-class similarities, non-universality and spoof attacks. Multibiometric systems seek to alleviate some of these problems by consolidating the evidence obtained from different sources. These systems help to achieve an increase in performance. This paper focused on developing a multimodal biometrics system, which uses biometrics such as iris and retina. Fusion of biometrics is performed by means of rank level fusion. The ranks of individual matchers are integrated using the borda count, and logistic regression approaches. The developed multimodal biometric system utilize and Fisher’s Linear Discriminant (FLD) and Principal Component Analysis (PCA) methods for individual matchers (Iris and Retina) identification. The features from the biometrics are obtained by using the Fisherface. The experimental result shows the performance of the proposed multimodal biometrics system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank Level Fusion Using Fingerprint and Iris Biometrics

Authentication of users is an essential and difficult to achieve in all systems. Shared secrets like Personal Identification Numbers (PIN) or Passwords and key devices such as Smart cards are not presently sufficient in few situations. The biometric improves the capability to recognize the persons. A biometric identification system is an automatic recognition system that recognizes a person bas...

متن کامل

Robust Multi-modal and Multi-unit Feature Level Fusion of Face and Iris Biometrics

Multi-biometrics has recently emerged as a mean of more robust and efficient personal verification and identification. Exploiting information from multiple sources at various levels i.e., feature, score, rank or decision, the false acceptance and rejection rates can be considerably reduced. Among all, feature level fusion is relatively an understudied problem. This paper addresses the feature l...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Rank-Level Fusion of Multimodal Biometric Cryptosystems

In this paper we present an effective scheme that preserves the biometric templates more secured. We present a new algorithm called Enhanced Blind Encryption Algorithm for securing biometric templates between client and server and using that for authentication. There are four phases involved in this process namely, enrollment, identification, matching and fusion. During enrollment, biometric tr...

متن کامل

Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition

The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011